
MAC OS X
HACKS

100 Industrial-Strength Tips & Tools

Rael Dornfest & Kevin Hemenway

MAC OS X
HACKS

MAC OS X
HACKS

 Rael Dornfest and Kevin Hemenway

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Turning a Command-Line Script into an Application #57
HACK
H A C K

#57
Turning a Command-Line Script
into an Application Hack #57

What do you get when you combine the power of Unix scripting with the
simplicity of the OS X GUI? A powerful droplet application limited only by your
scripting prowess.

DropScript (http://www.advogato.org/proj/DropScript/), as the name sug-
gests, is a little application onto which you can drop any shell, Perl, or other
command-line script. It turns that script into a full-fledged, self-contained,
double-clickable application capable of running on your desktop and doing
interesting things with any files you feed it.

Perhaps an example is in order. I’ll create a shell script to zip any files passed
to it on the command line:

#!/bin/sh
gzip "$@"

I save it to gzip.sh, make it executable, and give it a whirl on the command
line:

% chmod +x gzip.sh
% echo "something" > file1
% echo "something else" > file2
% ./gzip.sh file1 file2
% ls *.gz
file1.gz file2.gz

It works as expected, gzipping any files it’s given.

Now I drag gzip.sh on to the DropScript application. Within seconds, a new
application is created, called, suspiciously, Dropgzip (see Figure 5-23). This
is a tiny application with all the functionality of my original gzip.sh shell
script. Like its parent, it accepts files—only dropped onto it from the Finder
rather than fed to it on the command line.

Yes, it’s a simple example, but any script will work as long as it expects only
files and folders as arguments.

Figure 5-23. Creating a DropScript application, before and after
Unix and the Terminal | 213

#57 Turning a Command-Line Script into an Application
HACK
Options
DropScript sports some simple options, embedded in the original script as
comments. For example, while it makes sense that gzip.sh should accept any
file or folder it’s fed, gunzip.sh should accept only things that are zipped. To
set this restriction in the script, you’d just add the following line:

EXTENSIONS : "tgz" "tar" "gz" "Z" "zip"

Services
The most intriguing attribute of DropScript is that its applications can be
made to export their functionality as services, appearing in the Services
menu of just about any application.

To do so, specify a service name, like so:

SERVICEMENU : "SomeService"

where SomeService is the name under which the service will be listed in the
Services menu. You can even specify that a particular service live within a
submenu by including a path in the option:

SERVICEMENU : "SubMenu/SomeService"

Drop the script on DropScript and drag the resulting application to, where
else but, your Applications folder. Log out and back in again and your new
service will be right there in the Services menu, as shown in Figure 5-24.

I’ve only just scratched the surface of the sorts of applications you can build.
After all, you have the power of all the built-in open source scripting lan-
guages (Perl, Python, Ruby, sh, etc.) at your disposal. You’ll find some docu-
mentation and sample scripts (including a version of gzip.sh) in the
Examples folder included with DropScript. These should be enough to get
you started and experimenting.

Figure 5-24. A DropScript application as exported service
214 | Unix and the Terminal

Turning a Command-Line Script into an Application #57
HACK
See Also
• ScriptGUI (http://homepage.mac.com/cnorris/ScriptGUI/about.html), a

similar Unix-script-to-GUI-application converter. It doesn’t provide
exported services, but does include a handy GUI window for running
and inspecting scripts.
Unix and the Terminal | 215

	Hack #57 Turning a Command-Line Script into an Application

