The

Complete
Reference

Chapter 3

An Qverview
of the System

70 FreeBSD: The Complete Reference

chapter provides a quick overview of FreeBSD, including the boot process,

logging in, running programs, starting and using X, logging off, and shutting
down. If you use FreeBSD as a desktop workstation, chances are you'll need to know
how to perform most of these tasks on a fairly regular basis. FreeBSD systems often go
for days or even months without rebooting, though, so the booting and shutdown actions,
although important, may be infrequent. If your FreeBSD system is a server, you might
not run X on it, but the remaining topics are important.

With FreeBSD installed on your computer, it’s time to begin using the OS. This

___| Booting the Computer

In one sense, booting a FreeBSD computer is a simple matter—you turn on the power
and wait for the system to come up. You may need to deal with an option or two,
though, and the boot process provides a great deal of information that you may find
useful later, particularly if you need to debug a problem. This section therefore describes
the boot process from a practical perspective.

Selecting FreeBSD

The early stages of an x86 computer’s boot process are controlled by the Basic Input/
Output System (BIOS) installed in the system. Once the BIOS finishes its self-tests and
other startup procedures, it hands control over to a boot loader that’s stored on disk—
typically the hard disk when booting an installed OS, although floppies, CD-ROMs, and
other removable media devices can contain boot code as well.

If you installed FreeBSD alongside another OS, chances are you'll see a boot prompt
that resembles the following (the FreeBSD Stage 0 boot prompt):

Fl DOS
F2 FreeBSD

Default: F2

FreeBSD labels Windows partitions DOS, so don’t be concerned if this is what you
see and your non-FreeBSD partition holds Windows. Press the key (F1, F2, or some
other key if there are more than two options) that corresponds to the OS you intend to
boot—FreeBSD in the case of this example. The default value corresponds to the OS
you booted last. If you regularly boot one OS, you can wait for the system to boot this
default OS, but for a quicker boot, press the appropriate function key.

Note | If you've installed a boot loader other than FreeBSD’s default, you see it rather than the
FreeBSD boot loader. Chapter 4 includes a discussion of third-party boot loaders.

Chapter 3: An Overview of the System

Once FreeBSD starts to boot, it begins displaying status messages. The first of these
relates to the bootstrap loader, which is a secondary boot loader (also known as the
Stage 1 and Stage 2 boot loaders, in FreeBSD parlance; the two are distinct programs,
but function as one). The Stage 0 boot loader is very small and simple; it merely redirects
the boot process to the appropriate partition. The Stage 1/Stage 2 boot loader is more
complex and more FreeBSD-specific. It displays a message similar to the following:

Hit [Enter] to boot immediately, or any other key for command prompt.
I Booting [/boot/kernel/kernel] in 9 seconds...

The time in the second line counts down. Ordinarily, you can wait for it to time
out to boot FreeBSD, or press ENTER to speed up the process slightly. In some rare
circumstances, though, you may need to load special kernel modules (that is, hardware
drivers) or otherwise configure the kernel. If so, press any other key and the bootstrap
loader allows you to enter commands. Some of them are described in Chapter 4.

You may enter any special parameters for the bootstrap loader, or let it time out, or
press ENTER to have it move on without special options. Once this happens, the bootstrap
loader loads the FreeBSD kernel into memory, from the file /boot /kernel/kernel
or from another file that you specify as an option. The kernel then displays status
information and runs FreeBSD startup scripts.

Interpreting Boot Messages

Unlike Windows, which displays little in the way of startup messages, FreeBSD is quite
verbose as it starts up. In fact, it’s so verbose that much of the information it presents
scrolls off the screen before you have a chance to read it. Fortunately, the kernel messages
are stored for a time after you boot, and you can view them by typing dmesg. You may
want to redirect these messages into a file for perusal with a text editor (as in dmesg >
dmesg . txt) or pipe the result through a text viewer such as less, as in dmesg | less.
You won't be able to do these things until after you've logged in, though, as described
later in this chapter in the section “Logging Into an Account.”

Redirection and piping, which are the techniques used in the preceding commands to
Note . ,

send the output of dmesg to a file or through a text viewer, are common methods of

getting programs to work together or to capture program output in FreeBSD. These

topics are covered in Chapter 5.

Whether you're quickly scanning the boot messages as they're displayed or studying
them in more depth after you log in, these messages can be a useful source of information
about your system. They begin with a series of copyright messages and information on
the version of FreeBSD you have installed. Subsequent lines identify your CPU, including
its make, model, and clock speed. The system also reports the amount of memory you
have installed. This includes both the real memory (the amount on the SIMMs, DIMMs,

72

FreeBSD: The Complete Reference

or other memory chips you've installed in the computer) and the available memory (the
real memory minus that used by the kernel, BIOS caches, and so on).

The bulk of the information that the kernel displays consists of reports on various
hardware devices. These reports typically begin with a device name (which usually
bears little resemblance to any name you might use for the device), a colon (:), and a
more descriptive expansion or report of details. Some devices consume more than one
line. For instance, the following is a report that’s likely to appear very early:

npx0: <math processor> on motherboard
npx0: INT 16 interface

This identifies the computer as supporting a math coprocessor, which is a component
that performs floating-point arithmetic. All CPUs since the 486DX series include a math
coprocessor as part of the main CPU, but 386, 4865X, and some NexGen CPUs lacked
this feature. Such systems often supported math coprocessors as add-on chips that fit
into motherboard sockets, hence FreeBSD’s claim that the math coprocessor is on the
motherboard.

Other devices that you're likely to see mentioned include:

B PCI and ISA busses The pcib0, pci0, isab0, and isa0 devices relate to
the PCI and ISA busses—that is, the slots in which you insert expansion cards.

B ATA controllers The Advanced Technology Attachment (ATA) interface is
another name for the Enhanced Integrated Drive Electronics (EIDE) hard disk
interface. Modern computers are likely to have three ATA devices: atapci0
(the ATA controller, which is built into modern motherboards) and the devices
associated with the two ATA busses, ata0 and atal. Some systems may have
more or fewer ATA devices than this, though.

B SCSI host adapters If your system has a SCSI host adapter, you're likely to
see a device for it. The name varies depending upon the type of chipset used
on your SCSI adapter.

B USB controllers and devices You may see several devices whose names begin
with u that relate to USB support. Most systems have a uhci0 or ohci0 device
that corresponds to the USB controller itself, a usb0 device that serves as an
abstraction of the USB controller, and a uhub0 device that grants access to the
USB ports on the computer. You may have additional USB devices, such as
umass0 for a mass-storage device such as a Zip disk, or ums0 for a mouse.

B Network devices The names of your network devices, if any, vary depending
upon the chipsets used. There’s usually a core device, whose description includes
the name of the chipset used, and several additional devices related to specific
component parts of the network device.

B Keyboard and mouse If you're using a standard keyboard, FreeBSD reports
it as atkbdc0 and atkbd0. The mouse may be psm0 (for a PS/2 mouse), ums0
(for a USB mouse), or something else, depending on its interface type.

Chapter 3: An Overview of the System

B Parallel and serial devices The parallel port (ppc0) may support several
subdevices for printers (1pt0), generic parallel-port input/output (ppio0),
and networking (p1ip0). The serial ports (sio0 and siol, typically) might
conceivably show a Point-to-Point Protocol (PPP) device (ppp0), but this
normally appears only after you've explicitly started a PPP network link.

B Console FreeBSD uses a special device to access the console (sc0)—normally
the keyboard and monitor attached directly to the computer.

B Video Most systems support a vga0 device for the video card.

B Disk devices The floppy disk (£40 and £dc0), EIDE hard disks (ad0 and up),
SCSI hard disks (da0 and up), and CD-ROM drive (acd0 for EIDE disks) all
have their own devices. You may see an error message about an inability to find
the device’s capacity for some removable drives, such as Zip drives, unless you
boot with a disk in the drive. Don’t be concerned about such messages.

If you notice error messages related to any of these devices, it may indicate that
FreeBSD has not detected the device correctly or it isn’t working. If some important
device is missing, it’s possible that it’s something for which no FreeBSD driver exists,
or the device may be damaged or inoperable. Some devices may not show up immediately.
For instance, external devices that aren’t turned on won't appear. You may also see
some devices labeled as unknown. These are probably devices that FreeBSD found but
could not configure correctly. This situation sometimes happens with plug-in cards for
which no FreeBSD drivers exist.

Understanding Startup Scripts

After starting the kernel, the FreeBSD boot process runs a program called init. This

program controls the startup process once the kernel is loaded and running. It does this

by running various startup scripts in the /etc directory, starting with /etc/rc. These

scripts control the startup process, launching servers and other programs that must run

in the background. Many of these actions produce further output on the screen, although

this output is not stored for retrieval via dmesg, as are the kernel startup messages.
Some of the tasks performed by init and its startup scripts include:

B Filesystem checks When FreeBSD starts, it checks partitions to be sure
partitions are clean—that is, that they were properly unmounted. If they’re not
clean, FreeBSD runs the fsck program, which checks the partitions and corrects
any problems that might have resulted from a crash or other unclean shutdown.

B Mounting partitions FreeBSD mounts its partitions under direction of the
/etc/fstab file. This file is described further in Chapter 7. For now, know that
it contains information on partitions and mount points, as you defined them
when you installed FreeBSD.

B Miscellaneous configuration FreeBSD must perform a large number of
miscellaneous startup tasks to do things such as configure its network
interface, enable PC cards on laptop computers, and initialize serial ports.

74 FreeBSD: The Complete Reference

B Running servers and other programs Some programs must run continuously
to do any good. These include, but are not limited to, most servers. They’'re
normally started automatically at boot time.

Note | Most servers run as daemons. This word derives from the Greek, and means “helper.”

In FreeBSD (and UNIX generally), daemons typically run unattended in the background, in
order to provide some necessary service. Not all daemons are servers, but many are. The
similarity of this word to the English word demon is what gives rise to the horned red
FreeBSD mascot.

B Enabling logins In order to log into a FreeBSD system, that computer must be
running some form of login program—a program that accepts a username and
password and grants the user access to the system in response. Some login
programs are network servers, but others run locally. FreeBSD starts the latter
class via entries in the /etc/ttys file.

Chapter 6 describes the system startup scripts in more detail. For the moment,
it’s important that you know that FreeBSD starts many programs during its startup
process, including those that enable you to log onto the system. As described in
Chapter 6, you can modify the FreeBSD startup process to add new programs or
delete those you don’t need.

___ | Logging into an Account

Once the system boots, FreeBSD displays a login prompt of one sort or another. Logging
in involves entering your username and password. Before you do this, you should know
something of the different login types—text mode vs. GUI, and user vs. root logins.
You should also know what to expect once you've logged in, and how to acquire root
privileges once you've logged into a user account.

Text-Mode and GUI Logins

The default configuration for FreeBSD is to provide a text-mode login. This means that
when you boot the computer, you'll see a text-mode prompt that resembles the following:

I login:

This is FreeBSD’s way of asking for your username. Type it, and then press ENTER.
FreeBSD responds with another prompt, immediately below the first:

I Password:

Chapter 3: An Overview of the System 75

Enter your password at this prompt, and then press ENTER again. As a security
measure, you won't see your password echoed to the screen. (The security benefit is that
nobody lurking nearby sees it, either.) If you enter the correct password, FreeBSD displays
a screenful of information about where to find security advisories, FreeBSD documentation,
and so on. At the bottom of the screen you'll see a command prompt, which is probably
a single dollar sign ($). The root account’s prompt is a pound sign (#), though, to
help you identify when you're logged in as root. Depending upon your account’s
configuration, you may see additional information just prior to the prompt, such as
your username or the name of your shell.

A text-mode login such as this allows you to run text-based programs and use text-
mode commands, as described in the upcoming section, “A Summary of Text-Mode
Commands.” Sometimes you may want to run multiple text-mode programs. Two
common ways to do this are

B Virtual consoles FreeBSD supports a feature known as virtual consoles, which
enables you to log in several times. After you've logged in once, press F2, or any
other function key up to F8. You'll see another 1ogin: prompt, and you can log
in a second time. Press F1 to return to the first virtual console. You can then run
different programs in the different screens. You can even log in as different
users in the different virtual consoles. (Once you start running X, as described
later in this chapter in the section “Starting X,” you must press ALT along with
the function key to switch to another virtual console. X itself runs in the 9th
virtual console, accessed via F9.)

B Background processing You can run one program in the background, meaning
that it no longer receives your keyboard input. To do this, append an ampersand
(&) to its command name when you run the program, as in numbercrunch &.
Alternatively, you can suspend a program’s operation by pressing CTRL-Z when
it’s running; this stops the program without killing it and returns you to a
command prompt. This step is particularly useful if you want to temporarily exit
from a program and then return to it; typing £g gets you back into the program,
and typing bg sets it running in the background, as if it had been started with
an ampersand to begin with.

If you log in using text mode, you won’t be able to run GUI programs without first
starting the X Window System (or X for short), as described in the upcoming section,
“Starting X.” You can configure a FreeBSD system to automatically start X when the
system boots. Such a system uses the X Display Manager (XDM) program, or a similar
tool, to provide a GUI login screen, as shown in Figure 3-1. When you type your username
and password in this screen, FreeBSD automatically starts your X environment. You
may prefer this configuration if you do most of your work in X. Properly configuring
such a setup requires starting the XDM program in one of the startup scripts, and you
may need to adjust users’ individualized X configurations, as well. Chapter 21 describes
how to configure XDM or similar programs, and Chapter 6 covers users’ login control
files, including those for use with XDM.

76 FreeBSD: The Complete Reference

X Window System

Login: bjolitz|

Password:

Figure 3-1. A GUI login runs in X and logs users directly into their X-based
environments.

User vs. root Accounts

As described in Chapter 2, you're likely to use at least two FreeBSD accounts: an
ordinary user account and the root account. You employ a user account for day-to-
day user tasks, such as reading e-mail, browsing the Web, using a spreadsheet, and
manipulating graphics files. The root account is the account used by the system
administrator, aka the superuser. This account provides more-or-less unlimited control
of the computer; root can read, write, move, or delete any file on the computer. For
most tasks, you should use an ordinary user account; reserve root logins for the times
when you need to administer the system.

| In this book, commands you type are shown after a prompt. In most cases, this prompt is
either a dollar sign ($) or a pound sign (#), signifying the command’s use from a user
account or as root, respectively. This mirrors the default prompts displayed on the screen

when you’re logged in as an ordinary user or as root.

It's not uncommon to find that you've logged in as an ordinary user, but need
superuser privileges for some short action. This problem can be overcome in several ways.
One is to use FreeBSD'’s virtual consoles to log in as root, perform whatever action you
need to do, and log out again. Such a procedure can be awkward if you're running in
X and want to run a program that requires root privileges alongside other programs,
though. Even when running in text mode, there’s a method that’s often simpler: su.

The su program name stands for substitute user. It's a method of changing the identity
of a user who's already logged in. It can take several options and parameters:

I su [-] [-flm] [-c class] [username [args]]

| FreeBSD documentation often lists command syntax as in this example. Square brackets
indicate a parameter that’s optional. Single-character options within brackets can be added
or deleted individually (as in - f£1min this example; you can use just - £, just -1, just
-m, or any combination you like). Italic indicates variables. Ellipses (not shown here)

indicate that an option may be repeated. A vertical bar (|, also not shown here) separates
two alternatives that aren’t used together.

Chapter 3: An Overview of the System 77

The simplest use of su is to type it alone, as in su. If the user who types it is in the
wheel group, su prompts for the root password. If the user types this password
correctly, the user acquires superuser privileges. If you enter a username on the su
command line, you acquire that user’s identity. In either case, typing exit ends the
identity change. You can further modify su’s behavior by adding various optional
parameters:

B -1 orasingle dash (-) Ordinarily, su creates an environment that’s not quite
identical to a normal login environment. The -1 option (or a simple dash by
itself) discards most of the user’s current environment and creates a new one
that should match the target user’s normal environment.

B -f If the target user uses csh as a shell, this option causes su to not read the
csh configuration file, . cshrc. You can use this to make the target environment
less like the target user’s normal environment.

B -m This option changes your identity without changing your environment
at all. For instance, you'll continue to use your normal command shell, even
if the target user normally uses a different one.

B -c class FreeBSD supports login classes, which are similar to groups.
You can specify a class whose settings you want to use.

B args If you want to pass arguments (control parameters) to the target
user’s command prompt shell, you can do so by placing them at the end
of the su command.

You'll find that su is an extremely useful tool for administering FreeBSD. Using su,
you can log in as an ordinary user and run privileged programs when necessary by first
typing su. This procedure works both from text-mode logins and from GUI logins once
you've started a window in which you can enter commands.

You can log in directly as root at the console, but as a security measure, FreeBSD
doesn’t accept remote logins via Telnet as root. This restriction means that a remote
attacker who knows the root password must also know another user’s password to
invade the system—a would-be attacker must log in as an ordinary user and then use
su to acquire root privileges. Of course, the same is true of authorized administrators,
which may be an inconvenience. Nonetheless, the increased security is worth this
inconvenience. Indeed, even at the console, it’s best to not log in directly as root. When
you use su, FreeBSD logs the fact, including the user who issued the su command. This
logging can help you track who’s doing administrative tasks, which may be important
if you find that somebody’s abusing superuser power.

A Summary of Text-Mode Commands

Because FreeBSD defaults to starting up in text mode, this chapter’s first real description of
FreeBSD tools focuses on text-mode operations. This topic begins with a description

78 FreeBSD: The Complete Reference

of shells—the programs that accept text-mode commands. When running programs
from a shell, it’s important that you understand a few common standards, such as how
the shell interprets filenames and what types of programs you can run. This section then
proceeds to cover a few of the more common commands and shell procedures.

| If you're used to GUI-oriented OSs such as Windows or Mac OS, you might be tempted
to skim this material as quickly as possible. Many FreeBSD administrative tasks are
much easier to perform in text mode than in a GUI, though. Although text mode can
be intimidating at first, it’s very powerful—more so in FreeBSD than in Windows.

Thus, learning to use text-mode commands greatly enhances your ability to handle
a FreeBSD system.

Understanding Shells

When you log into a FreeBSD system in text mode, FreeBSD launches a program—your
shell. As described in Chapter 2, the name of your shell is associated with your account.
In principle, FreeBSD can use any program as a shell, but by convention only programs
designed as shells are used in this capacity for login accounts. The default shell for
FreeBSD is sh, but others are available. Common choices include csh (implemented by
tcsh in FreeBSD, so these two are equivalent), bash, ksh, and zsh. These shells are
ordinary FreeBSD programs. Some reside in /bin, but others live in /usr/local/
bin. For the most part, all these shells operate in the same way, although they differ in
their advanced features and in a few less advanced ways. For instance, the default prompts
presented by these shells differ, and they use different configuration files; sh uses the

. shrec file in the user’s home directory for configuration, whereas tcsh uses . tcshre
or .cshrc, and bash uses . bashrc. The precise format of these files differs, too, so you
can’t simply rename, say, . shrc to . tcshre and expect it to work. Chapter 6 briefly
describes some of these files” formats.

In addition to the traditional UNIX shells, FreeBSD supports some nontraditional
shells, such as mudsh, which resembles old text-mode adventure games such as Zork
in its built-in commands and prompts; and pash, which provides a text-mode file
browser interface similar to Norton Commander for DOS, as shown in Figure 3-2.

If you want to experiment with various shells, install them using the FreeBSD
sysinstall utility’s Configure option, as described in Chapter 11. There’s a
package area devoted to shells, so you can browse their descriptions and install any
that sound interesting. You can then run different shells by typing their names. For
instance, if you're in sh as the default login shell but you want to try tcsh, type tesh
to launch it. If you decide you want to change your default shell to the one you're trying,
you can do so by modifying your account configuration, as described in Chapter 10.

All shells support a combination of built-in and external commands. Most commands
you use directly from the shell are external. Most, but not all, of the shell’s internal commands
are interesting when it comes to scripting: You can write a short program in the shell’s

Chapter 3: An Overview of the System

Terminal -0Ox

File

Edit Settings

Pash 2,2 w Commands He ~1-G = Men i : i
o0 B1203/20,/02 L.
A emacs,d 120210402 /. Applellouble Z2F03/20402
£ .enlightenmes 01201/06/02(15:44 | |40903ce, doc 1817E003,/21/0216: 38
£ esd B1203/20/02| 1640 | [409031,doc 14899201/29/02 [16:58
£ cgnome 1203/20/02|16:41 | 40903, doc 12492801/22/02 [16:49
£ conome—deskt> 1202724402\ 20251 | [40903w, doc 1853440107 /02 [17 208
£ onome_privar R1202/04/02|15:14 | |FOZ-0L,tif 1284BR01/04,/02 (14225
4o loewm D1203/24/02 14204 | |FO3-02,tif 189706010602 (1609
£me B1203/14/02|19:11 | |FO3-03,tif TEE3080LMEA02 (21211
domozilla 1201706402 2102 | |FO3-04,Lif 129338010602 [22103
/.hetzcape D1201/28/02|09:46 | |FOZ-05,tif 43509201ME6/02 [22250
£ hetscapeb R1201/28/02| 09143
£ wzzh 01201/02/02 | 0608
Auine D1201/28/02| 20223
AGMNUstep 01212/15/01 | 2225
Mail 120106022159
Alpenlffice, o 512?1/28!02 ?0:53
Selected: 0 file, O byte Selected: 0 file, O byte
oo orodsmith/book s/ fresbsd/chaptero3:ll

Figure 3-2.

Text-mode shells can be run in text mode or in windows from within X,
as shown here.

command language. These scripts can launch other programs, operate on files, and so
on. Chapter 31 covers creating such scripts.

Some shells, including tcsh and bash, support a useful feature known as command
completion: If you type a partial command and then press TAB, the shell attempts to
complete the command. The shell can do two things in response, depending upon
what you've typed:

B If you've typed only part of a program name, the shell tries to find a program
that matches what you've typed. For instance, if you type chm and then press
TAB, chances are the system will respond by filling out your command as chmod.

B If you've typed a complete program name and part of a filename to be given to
the program as a parameter, the shell tries to locate the file that matches what
you've typed so far, much as it tries to find a matching program file in the first case.

In both cases, if the shell finds multiple matches, it either beeps or displays all
the possible matches. In some cases, pressing TAB again displays all the matches,

79

80

FreeBSD: The Complete Reference

if the shell only beeps. If it beeps again, this means there’s no match to what you've
typed so far.

Note that command completion can’t fill out options you give to commands, aside
from other files’ names. You'll have to know enough about the commands you use to
specify the options you want.

Another common shortcut is to use filename wildcards. These are a way to specify
multiple files at one time. Two common and useful wildcards are the asterisk (*) and
the question mark (?). These wildcards work much like their equivalents in a DOS or
Windows command line. Use them when you specify a filename, but not a command—
to run a command you have to enter the command name precisely. The asterisk matches
any character or set of characters, including none at all. For instance, if you specify F*D
as a filename, this matches FD, FeD, FreeBSD, or any other filename that begins with F
and ends with D. The question mark, by contrast, matches a single character, so F?D
matches FeD and FFD, but not FD or FreeBSD.

More wildcards are available in FreeBSD than just the asterisk and question mark.
One common expansion is to place a set of characters to be matched in square brackets
(I 1).If any of the characters in the brackets appear in that position, the wildcard matches.
For instance, F [aeu] D matches FaD, FeD, and FuD, but not FoD or FeeD. Instead of
listing individual characters, you can specify a range, as in F [a-c]D, which matches
FaD, FbD, and FcD.

Running Text-Mode Programs

To run a program, you need only type its name at your shell’s command prompt. For
instance, to run a program called someprogram, type someprogram, and then press
ENTER. If the program is in a normal location for programs, the shell loads it and runs
it. Depending upon what the program does, it may take over your screen, display some
data, ask for input, or create no visible output. Many UNIX programs produce no output
when they operate correctly; only when something goes wrong do they produce error
messages.

When you type a program’s name, shells look in several directories to find the
program. These directories constitute the path, which is set via an environment variable
called PATH in your shell’s configuration files (including both your personal configuration
file and a system-wide configuration file). Typically, the path includes /bin, /usr/bin, /
usr/X11R6/bin, /usr/local/bin, and possibly some other directories. The root
account’s path usually includes /sbin and /usr/sbin. These directories hold programs
that the system administrator may need to run, but that normal users seldom run.
Despite these added directories, root’s path is often shorter than that of ordinary users.
This serves as an incentive to avoid using the root account unnecessarily; without
directories for common user tools in root’s path, it’s awkward to run these programs
as root.

If a program isn’t on the path, you must type the complete path to the program
file. For instance, if someprogramis in /opt/bin, you need to type /opt/bin/

Chapter 3: An Overview of the System

someprogram to run it. Alternatively, you can use a relative path, in which the file is
located relative to the current directory. Relative paths don’t begin with a leading slash
(/), but take any of several other forms:

B The name may begin with a double dot (. .), which is the indicator for a given
directory’s parent. For instance, in /home/bjolitz, the .. refers to /home.
Thus, from that directory, . . /.. /opt/bin/someprogram is equivalent to
/opt/bin/someprogram.

B Another form for a relative path is as a subdirectory of the current directory.
For instance, from /opt, you might type just bin/someprogram to launch
/opt/bin/someprogram.

B Aleading ./ indicates that the program file resides in the current directory.
Sometimes a current directory (.) entry appears in the path, and if this is the
case you can omit the . / characters.

Using the current directory (.) entry in the path is risky because it means that FreeBSD

aution | . : iy) .
executes any program in the current directory as if it were in a standard location for
programs, which are normally writable only by root. If you decide to place this entry in
the path, do so only at the end of the path, so that the shell searches for common programs
in their normal locations before looking in the current directory. This advice is especially
important for root because if root has a current directory entry in the path, miscreants
could trick root into running unauthorized programs stored in the miscreants” home
directories. Overall, it's best not to place the current directory entry in any user’s path.

B Aleading tilde (~) indicates a user’s home directory, so ~/someprogram refers
to someprogram in the user’s home directory.

These conventions apply to any file specification, not just those used to launch
programs. For instance, if you have to type the name of a file upon which a program
operates on the same line as the command, you can use any of these methods. In addition,
you can omit the leading . / when referring to a data file in the current directory. You
may want to experiment with these techniques using cd (to change to a new directory)
and 1s (to display the contents of the current directory or the one you specify). If you
get lost using cd, type ed alone to return to your home directory, or pwd (short for print
working directory) to find out where you are.

Many programs accept options, parameters, or arguments, which are names for additional
information fed to a command on the same line as the command itself. For instance, you
might pass the name of a file to an editor to have the editor load the file when it loads.
Other parameters are program-specific; they change the way the program operates in
some way. The upcoming section, “File Manipulation Commands,” includes information
on the parameters these commands accept.

If you're new to UNIX-like OSs, you should be aware that FreeBSD is a case-sensitive
OS, meaning that the case of letters in commands and filenames is important. For instance,

82

FreeBSD: The Complete Reference

typing pwd tells you what your current directory is, but typing PWD is likely to produce
a command not found error message. Most commands use case-sensitive options, as
well, although there are a few exceptions to this rule.

File Manipulation Commands

This section describes several commands used to manipulate files. You can use these
commands to perform basic actions such as listing files in a directory, moving files, and
deleting them. Some other actions are quite important, but are covered elsewhere in this
book. In particular, Chapter 5 covers using text editors; and Chapter 8 covers ownership,
permissions, and additional miscellaneous file manipulation tools.

cd: Change Current Directory
The cd command moves you into another directory. For instance, if you've got a
subdirectory called taxes in your home directory, you can move into this directory
by typing cd taxes (or cd ~/taxes if you're not currently in your home directory).
Although it’s seldom strictly necessary to change your current directory, doing so can
reduce the amount of typing you need to do if you plan to operate on several files in a
given directory, by eliminating the need to type extended paths to specify these files.
The cd command is built into whatever shell you use; unlike most commands, it’s
not a separate program.

Is: List Files
If you want to see the files in a directory, use 1s. Its basic output resembles this:

S 1s
GNUstep Mail XF86Config.new xinit.core

Each filename appears without further information. You have several ways to modify
the output of 1s to provide additional information. One of these is the -1 option, which
causes 1s to create a long listing, thus:

$ 1ls -1

total 406

drwxr-xr-x 5 rodsmith wusers 512 Dec 15 22:25 GNUstep
drwx------ 2 rodsmith wusers 512 Jan 1 20:51 Mail
-rw-r--r-- 1 rodsmith users 3263 Dec 15 21:35 XF86Config.new
-rw------—- 1 rodsmith wusers 397312 Dec 15 20:50 xinit.core

Additional information in this listing includes the permissions on the file (also known
as the file’s mode, signified by the string of ten characters at the start of each line), the
username (rodsmith in this example) and group (users) associated with the file,

Chapter 3: An Overview of the System

the file’s size, and the file’s creation date and time (if the file is older than a year, the
date format changes to show the year rather than the time).

If you add the name of a directory to the command, it displays information on files
in that directory. If you add a partial name with a wildcard, the command displays
information on all files or directories that match the wildcard. For instance, typing
1s *.txt displays all the files with names ending in . txt.

The 1s command supports a large number of options. Consult the 1s man page (by
typing man 1s) for information on all of them. The more commonly used options include:

B -a This option causes 1s to display all the files in a directory. Normally, 1s
doesn’t show so-called dot files, which are files whose names begin with dots,
such as . teshre. Dot files are usually configuration files for the programs
whose names they otherwise resemble, such as the tcsh shell for . tcshre.

B -rR If you want to see all the files in a directory and its subdirectories, use this
option, which creates such a recursive listing. Note that this command may
create a huge listing, so you may need to pipe the results through a paging tool
such as less,asin 1s -R /usr | less, to make sense of the output.

B -F The default short output provides no clues about the type of each file
in the listing. Using this option causes FreeBSD to display a character after
certain files to indicate their types: a slash (/) for directories, an asterisk (*)
for program files, an at-sign (@) for symbolic links, and a few others for more
specialized file types.

| A symbolic link is a pointer to a file or directory that's stored under another name or in
another directory. Symbolic links consume little disk space but enable you to call files or
directories by multiple names.

B -f Normally, 1s sorts its entries alphabetically. This option disables this sorting.

B -n This option is used in conjunction with -1; it causes usernames and group
names to be replaced by the underlying user IDs (UIDs) and group IDs (GIDs),
respectively.

You can combine multiple options in a single option string. You can also add a path
(relative or absolute) to a directory whose contents you want to list. For instance, the
following command lists all the files and provides file type information for files in
the /tmp directory:

$ 1ls -aF /tmp
./ .X0-lock .sawfish-rodsmith/ sample-file.txt@ temprog*
./ .X1ll-unix/ orbit-rodsmith/ sample. txt

FreeBSD: The Complete Reference

cp: Copy Files

The cp command copies files. You can use the command in two ways:

cp [options] source-file target-file
cp l[options] source-file target-directory

In the first case, you specify the precise filename to be used for the copy. This name
may include a path to the file, or it may be a new filename in your current directory. In
the second form, you specify only a directory to which the file will be copied, and cp
uses the same filename within that directory as the original file used.

Like 1s, cp supports a number of options, enabling it to perform recursive copies
(that is, copy an entire directory tree), handle symbolic links, and so on. Chapter 8
covers these advanced cp options.

mv: Move Files

The mv command moves a file from one location or name to another. Its syntax and use
are similar to that of cp, and as with cp, you can use either a complete filename for the
target or a directory to which the file will be moved with its original name intact.

If you're familiar with DOS or Windows text-mode commands, you should be aware
that mv performs the jobs of two separate DOS commands: MOVE and RENAME. When
you give mv a target directory, it works much like the DOS MOVE command, moving
the file to a new directory. When you provide a target filename, mv renames the file to
use the new name. If you give a target directory and specify a filename within that
directory, mv does both. For instance, consider the following three commands:

S mv file.txt /tmp
S mv file.txt /tmp/somefile.txt
S mv file.txt somefile.txt

The first command copies file. txt to the /tmp directory, leaving its name
unchanged. The second command copies and renames the file, and the third renames
it within the current directory. When you specify a target directory without a filename,
you can move multiple files by using a wildcard or by listing the files individually, thus:

I S mv file.txt morefile?.txt /tmp

This command copies file. txt and any file matching the morefile?.txt
wildcard to /tmp.

When you move a file between directories on a single partition or removable disk
device, the file isn’t rewritten. Instead, a directory entry for the file is created in the new
location and the old directory entry is deleted. Thus, moves within a partition are very
fast. If you move a file between partitions, though, FreeBSD must copy the original and

Chapter 3: An Overview of the System 85

then delete it. Thus, these operations tend to be slower, although you’ll notice the
difference only on very large files.

rm: Remove Files

If a file is no longer needed, you can delete it with the rm command. You can also use
wildcards to delete many files at once. Chapter 8 covers this command’s more advanced
options, which enable you to perform tasks such as deleting an entire directory tree,
requesting confirmation before each deletion, or overwriting the files” contents before
deleting them.

e | By default, xm does not prompt for confirmation before deleting files. This fact can make
rma very dangerous tool, particularly in the hands of the superuser. In combination
with the option to delete an entire directory tree, root can easily remove all the files

on a FreeBSD system with a single rm command. Although rmis a necessary tool, you
should think carefully before issuing an rm command, particularly as root.

mkdir: Make Directory

FreeBSD treats directories much like files. In fact, directories are files, but they’re files
that contain the names of other files and pointers to them. When you want to create a
directory, though, you need a special tool, which is known as mkdizr. This command’s
syntax is

I mkdir [-pv] [-m mode] directory-name.. .

For instance, typing mkdir textfiles creates a directory called textfilesin
the current directory. Naturally, you can use a path specification as part of the directory
name. The options to this command are:

B -p Normally, mkdir requires that the immediate parent directory of the
specified directory exists. For instance, if you type mkdir ~/dirl/dir2 and
~/dirl doesn’t exist, mkdir returns an error message. The -p option causes
mkdir to create any necessary parent directories instead, so this command
would create ~/dirl before creating ~/dirl/dir2.

B -v This option increases the verbosity of the command’s output; it reports
every directory that it creates.

B -mmode Every file and directory has a set of permissions, or mode. This option
allows you to specify the mode of the directory, as described in Chapter 8.

rmdir: Remove Directory

If you want to remove a directory, you can do so with the rmdir command. Type this
command followed by the name of the directory you want removed. The directory must
be empty, or rmdir won't remove it. If you type the -p option prior to the directory

86 FreeBSD: The Complete Reference

name, though, rmdir will remove the entire directory path you specify. For instance,
rmdir -p dirl/dir2 removes dir2 and then dirl, provided both directories are
empty when rmdir gets around to them.

| If you want to remove an entire directory tree, including directories that aren’t empty,
P you can use the -x option to rm, as described in Chapter 8.

___| A Quick Tour of the GUI Desktop

You can accomplish a great deal in FreeBSD from a text-mode login. In fact, for
some purposes, such as a dedicated server, you might not want or need to run the

X Window System (or X for short). Most FreeBSD workstations, though, do run X, so
you should become comfortable with it. This section introduces X’s GUI environment,
including starting X, manipulating files, running programs, and changing the
environment’s settings.

Note | X is an unusually flexible GUI environment. Depending upon your installation options
and personal settings, you may find an environment that'’s totally unlike the one

described here. Chapter 13 covers X configuration options in more detail.

Starting X

If your FreeBSD system boots up into a GUI login prompt, such as the one shown in
Figure 3-1, you needn’t do anything explicit to start X; it’s already running, and you’ll
see an X-based interface of some sort when you log in. This mode isn’t the default
configuration for FreeBSD, though. As described earlier in this chapter, FreeBSD runs
in text mode immediately after starting by default. You can change this behavior by
running XDM or a similar program, as described in Chapter 21. In the meantime, you
can start X from a text-mode login. The usual method of doing this is to type startx.
This action starts X and launches the default GUI environment, which you set when
you installed FreeBSD. (You can change this default by editing the .xinitrc file, as
described in Chapter 13.)

Note | Some users need to add options to startx to get X running in a desirable resolution or
color depth. Chapter 13 covers changing your default X configuration so this shouldn’t
be necessary.

After you type startx, you may see several lines of text scroll across the screen, or
the screen may clear or change to another virtual terminal. If all goes well, the screen will
then clear and be replaced by a GUI mode screen. Depending upon the environment you
installed, you may see some startup messages, or you may simply see a blank screen or

Chapter 3: An Overview of the System 87

one with a few windows or other widgets on it. If you installed the GNOME desktop
environment, your display should resemble that shown in Figure 3-3, although your
system may not start the windows or show the icons along the left edge of Figure 3-3.
The next few pages provide an overview of GNOME, and so may not apply directly if
you've chosen to use KDE or a bare window manager. Many features are common, or
at least similar, across different desktop environments, but many details also differ.

-l If X doesn't start correctly, examine the last few lines of output for clues about what
€
went wrong, and consult Chapters 13 and 32.

You should begin your explorations by testing the features of the window manager
and desktop environment. Most FreeBSD window managers work much like the GUI

4% Programs Favorites Seftings Desktop ml:":“:":l- 022431 P O

rodsmith = O %

ia File Edit “iew Go Bookmarks Preferences Help

radsmith's Home va - > ‘ (4] ﬁ Q @\ 0 z

Back Forward Up Refresh Home Find Web Search Stop

Location |fhnmefrudsmith — .\ =r Wiew as lcons | 9
» etc E‘

- home XFBE%O;&Q new config bd cu—ﬂajmies

books
» D anonymo N
» 3 folding
» E3 fred E E

» D ftp dot-forward evolution home.tgz homepage
= 24 MB =

N D gdrm 43 hytes
» (£7 krusty i
3 D marie &

4/

(2

%

5 c
: S
@ §°
=1
k3
5

=
=
3
o

horme (2) icewm-themes.tgz J-cardwpt libwnek-0.100tgz license.bd
L make_sewit|_| 188.0 K 138K 951 K 356 hytes
p - mnt
» B3 cdram E
t g D foppy mail mbox ntp.conf testabw
» £3 proc = 831K 17K 12K
usr L
test gnumeric hd|
Trash
o B - =
Q lb @ g é QI “ radsrnith ‘ Terminal ‘] J o

Figure 3-3. The GNOME environment is similar to that provided by Windows,
Mac OS, or other modern GUI OSs.

88 FreeBSD: The Complete Reference

in Windows or Mac OS. Here are some important differences between the many FreeBSD
window managers and desktop environments:

B Window focus A window is said to be in focus when it receives input from the

| Tip_|

keyboard or mouse. Such windows are typically indicated by a different color
in their title bars (at the tops of the windows). Usually, the window that’s in focus
is also the front window—the one that’s fully exposed. For instance, in Figure 3-3,
the file manager window (titled rodsmith) is both in front and in focus. Most
window managers shift a window in front and give it focus when you click
anywhere in the window, but some shift focus when the mouse moves over

the window or only when you click the title bar. Experiment to learn what
yours does.

Window manager widgets A widget is a GUI tool that lets you interact with
a program. Window manager widgets are typically located at the right and left
sides of the title bar. Some work much like those in Windows, but others don’t.

Context menus Most FreeBSD window managers provide menus with options
relating to program launching, exiting from the window manager, and so on.
You can often reach these by right-clicking on the desktop. Other environments,
including GNOME, provide a menu you can reach by clicking near a corner. In
GNOME, the G-shaped foot icon in the lower-left of the screen serves this function.

Status bars, menus, docks, and panels Most desktop environments and some
window managers provide some form of menu that’s fixed along the top, bottom,
or side of the screen. In Figure 3-3, GNOME is configured with menus (which it
calls the Panel) along both the top and bottom of the screen. In the case of GNOME,
menu items at the top enable you to select GNOME options and change between
virtual desktops (virtual screens that can hold different programs, reducing clutter,
much like virtual terminals in text-mode logins). The bottom panel includes the
GNOME Foot, from which you can launch various programs, icons with which
you can launch a few particularly important programs, and a button for each
program that’s running in the current virtual desktop.

If your experiments damage your working environment, you can shut down X and delete
your user-level configuration files for your environment from your home directory. For
GNOME, delete any directory whose name begins with . gnome, including
.gnome and . gnome-desktop. If you delete these directories and restart X, you'll
find your GNOME desktop restored to its defaults.

Manipulating Files

If you see a file browser window similar to Figure 3-3’s rodsmith window open on
your screen, you can use it to move, copy, and otherwise manipulate files. If you don’t
see it, but do see a user’s Home icon on the screen for your home directory (such as
Figure 3-3’s rodsmith’s Home icon), you can open the file browser window by double-

Chapter 3: An Overview of the System

clicking that icon. If you don’t see the icon and are running GNOME, select GNOME
Foot | Programs | Applications | Nautilus to launch it, or type nautilus in a Terminal
window like the one eclipsed by the file manager window in Figure 3-3.

You can move to any directory on the system by clicking Tree in the left-hand side of
the window and selecting the desired directory in the resulting directory list. (Figure 3-3
shows this list in its expanded form.) If you want to move to a subdirectory, you can
expand a directory by clicking the triangle icon next to the directory’s name. Some
operations require you to have two windows open. You can do this by selecting File |
New Window or by launching a new window using the user’s Home icon. Some of the
things you can do with GNOME'’s file manager include the following:

B Copy files You can right-click a file and select Duplicate from the resulting
pop-up menu to copy it. The copy has the same name as the original, but with
(copy) inserted into the name. Alternatively, you can right-click an icon and
drag it to another directory in the same or another window (including in the
directory list to the left of the icons). Doing so produces a menu that enables
you to move the file, copy the file, create a symbolic link to the original file,
or cancel the operation.

B Move files You can move a file by right-clicking it and dragging it, much as
with a copy.

B Delete files Right-click a file and select Move to Trash to move the file to the
Nautilus trash directory. Alternatively, you can drag the file to the trash can icon
(near the lower left of the screen in Figure 3-3). These operations move the file
to a special trash directory that you can subsequently “empty” by selecting File |
Empty Trash from a Nautilus file browser window. You can move the file back out
of the trash before you empty it, however, if you find you need the file after all.

B Rename files Right-click a file and then select Rename from the context menu
to rename the file. You can also rename a file by right-clicking it and selecting
Show Properties. The resulting dialog box, shown in Figure 3-4, enables you to
rename the file or do other things to it.

B Change permissions Right-click the file, select Show Properties, and click
the Permissions tab in the Properties dialog box (Figure 3-4) to change the file’s
permissions. You can use this feature to restrict or loosen access to the file, as
described in Chapter 8.

B Launch programs If GNOME associates a file type with an application, you
can launch that application and have it load the file by double-clicking a file of
the appropriate type in the browser window. To launch some other application
to load a file, right-click the file and move your mouse over Open With. Nautilus
responds by displaying programs it’s configured to associate with the file type.
(Chapter 23 describes adding associations for particular file types.) Select
a specific program to launch that program and have it load the file.

89

90

FreeBSD: The Complete Reference

ﬁ(license.txt Properties)- - O x
| Erblems | Permissions |

Type: plain text document
Bize: 356 hytes
Location: ‘homefrodsmith/test

MIME Type: text/plain

Modified: Sunday, June 2 2002 at 2:35:07 P
Accessed: today at 2:36:14 P

Select Customn lcon... | Hemove Custom [con

Figure 3-4. The Properties dialog box lets you rename a file, change its group, and

modify its permissions, among other things.

The KDE environment offers a similar file browser, which doubles as a web browser.
FreeBSD supports many more file browsers in addition to these two, and you can use
the GNOME or KDE browser even if you're not using the rest of the environment.

Running Programs from a GUI

You can launch programs from a GUI environment in several different ways, including

B Program icons on the panel The icons immediately to the right of the

GNOME Foot in Figure 3-3 provide quick access to four common programs:
The GNOME Help Browser, the GNOME Terminal (which gives you access
to a text-mode command line), the GNOME Control Center (described in the
next section, “Configuring the Environment”), and the Mozilla web browser.

Program menu items Both the GNOME Foot panel item in the lower-left corner
of the screen and the Programs menu item in the upper-left corner of the screen
give you access to a variety of common programs, divided into several categories.

File browser As noted earlier, you can launch a program from the file browser,
either by locating it in your filesystem and double-clicking it or by double-clicking
a file that’s associated with the program.

Chapter 3: An Overview of the System 91

B Desktop icons Some desktop icons may launch programs. Most of the default
icons shown in Figure 3-3 open Nautilus windows on various hard disk partitions,
but you can reconfigure the desktop to include icons for programs you like.

B Terminal launch You can open a Terminal session using one of the previous
methods and then launch a program by typing its name in the Terminal. The
Terminal works much like a text-mode login; it runs within it a copy of your
default text-mode shell (sh, tcsh, bash, or whatever you've chosen to use).
Thus, you can use the Terminal to run text-mode programs.

Note | The GNOME Terminal is one of a class of programs that’s used to run a text-based shell
and other text-based programs within X. The most generic of these programs is called
xterm, and this class of programs is sometimes referred to by that name. Because

GNOME'’s Terminal is only one of several xterm-like programs, I use the name xterm
to refer to them generically in this book.

When you run X-based programs, they launch into their own windows, although
if you launch such a program from an xterm, the X-based program still “owns” the
xterm’s text display. Thus, the xterm becomes unusable unless you launch the program
with a trailing ampersand (&) to shunt it into the background, as described earlier in
this chapter, in “Text-Mode and GUI Logins.” It’s possible for text-based programs to
be configured to run from menus or the like, but they’re usually run by typing their
command names in an xterm window.

Because window environments differ so much, this book emphasizes the xterm
approach to launching programs. If you find the program in question on one of your
menus, of course, you can launch it in this way. You can even customize your desktop
environment to add the program to a menu or as a desktop icon.

One quirk of FreeBSD (or X and the programs that have developed around it, to be
more precise) is that GUI programs vary greatly in “look and feel.” This is because X is
composed of layers, from the X server to the desktop environment. Some of these
layers are ones that you choose, such as the window manager, but others are elements
that the programmer who develops a program chooses. When two programmers select
different development kits, their programs often differ in details such as the fonts used
in menus and the appearance of buttons in dialog boxes.

Configuring the Environment

Chances are you'll want to reconfigure some elements of your desktop environment
almost immediately. For instance, you might find the keyboard repeat rate to be
ridiculous, or you might want to add an interesting background image to the desktop.
These details are set in different ways in different GUI environments. In GNOME, you
set them in the Control Center, which you can launch by clicking the icon that looks
like a toolbox in the panel at the bottom of the screen. If you prefer, you can type
gnomecc in an xterm to launch the Control Center. Figure 3-5 shows the GNOME
Control Center with one of its modules loaded.

92 FreeBSD: The Complete Reference

1 i Control Center —_ox
‘ File Help
E (3 Deskiop [Wallpaper Preview
. -=EB 0
. none 1 | Browse... |

- B Screensaver

- iy Theme Selector

- b Window Manager = Tiled
E Document Handlers -« Centered

- Default Editor
- (¥ File Types and Programs
- @) HTML viewer
) URL Handlers
B T Look and Feel Color

~ Scaled (keep aspect)
e acaled

~ Embossed Logo

- g Applications — =
. 1 Dialogs Solid 1 | |

- moi
B} (3 Multimedia Primary Calor J
‘ef. Sound
B " Peripherals J
£ Keyhoard
— Mouse r Use GNOME to set background

B 5 Sessian
.. Session Propetties & Startu =

= P P «”J S0 Try ‘ Revert ‘ ok ‘ X Ccancel ‘

| —

‘Conﬂguration of the deskiop’s hackground

Figure 3-5. The GNOME Control Center enables you to adjust GNOME's settings
and those of affiliated programs.

To use the Control Center, you select the general type of setting you want to adjust
from the list to the left. Figure 3-5 shows the Desktop | Background module, in which
you can set the color of your desktop’s background or configure it to use a graphics file
instead. As you can see from Figure 3-5, these settings are broken into several broad
categories, such as

B Desktop This category includes options to set background color or image,
adjust the behavior of the Panel, enable a screen saver, load a theme that sets
various options in a single operation, and change the window manager that
GNOME uses.

B Document handlers You can tell GNOME what text editor you prefer to use,
what file types to associate with what programs, how it should display HTML
(web) documents, and what programs it should use for particular types of
Uniform Resource Locators (URLS).

Chapter 3: An Overview of the System

B Look and feel The modules in this section enable you to set options relating
to the user interface of GNOME programs. These options don’t apply to most
non-GNOME programs, though, so don’t be surprised if they don’t affect all
your programs.

B Multimedia You can configure some sound card settings and associate sounds
with particular events, such as logging in, logging out, and receiving e-mail.

B Peripherals You can adjust the keyboard repeat rate, mouse tracking speed,
mouse handedness, and similar options with these modules.

B Session You can set assorted login and logout defaults using the items under
the Session option, such as programs you want to launch when you log in and
whether GNOME should ask you for confirmation when you log out.

One thing that’s important to keep in mind about these configuration options is
that they’re user configuration options. They can vary from one user to another, so
several people can use the same computer without having to compromise on options.
If Sam really likes a bright pink background, but Sally prefers dark blue, they need not
compromise on gray or purple.

Because the GNOME Control Center sets only user options, you can’t set some options
that affect the entire system. For instance, you can’t load drivers, install programs, or
format disks from the GNOME Control Center. These actions are administrative tasks
that affect the entire system, and they’re covered in other chapters of this book.

___ | Logging Off and Shutting Down

When you’re done using FreeBSD, you should do one or both of two things: log off
and/or shut down. Logging off leaves the computer running, including any servers
you may be running, but it closes access to your account; to use your account, you'll
have to log in again. Shutting down the computer is more drastic; it terminates all
programs and sends the system into a state in which it’s safe for you to turn the
computer off.

. You should never turn the computer off without first shutting down FreeBSD. Like
Caution i
most modern OSs, FreeBSD performs many operations in the background, and caches
disk accesses—that is, it holds onto data before writing it, in the hope of being able to
combine the write into one operation, thus improving performance. These characteristics

mean that if you simply shut the computer off, you may lose data, and your filesystems
may become corrupted. This can slow the boot process and lose even more data.

Text-Mode and GUI Methods of Logging Off

Logging off prevents people who might wander by from sitting down at the computer
and using your account to do things you might not like, such as send offensive e-mail

94 FreeBSD: The Complete Reference

in your name or break into others’ computers. Logging off closes all the programs you're
running, including those running in the background.

If you've used a text-mode login, you can log off by typing Logout. This logs you
out of the account and displays a new login: prompt on the screen. You can log in
again at a later time, or somebody else can log in. If you've logged into several virtual
terminals, be sure to log out of all of them.

| By default, FreeBSD does not clear the screen as part of the logout process. If any

sensitive data appear on your screen, you may want to clear the screen by typing
clear before you type logout.

If you're running X, typing logout in an xterm window won't work because these
windows aren’t login sessions. Instead, you must shut down X or log out of your X
session. You can accomplish either task by selecting a special logout option on an
X menu. Precisely what this option is called varies from one environment to another.
In GNOMEE, it’s GNOME Foot | Log Out. In some stand-alone window managers, you
can find the logout option in a menu you obtain by right-clicking on the desktop.
Sometimes this option is called Close Window Manager, Exit X, or something similar.

After you select the X-based logout option, you'll either see the XDM login screen
(if your system is configured to use XDM) or your original text mode screen, with quite
a few messages displayed by the X server. (You can safely ignore these, if your X session
worked properly.) You can then type logout to log off the computer.

Note | In some cases, X doesn’t terminate correctly after you select the desktop environment or

window manager logout option. In such cases, you can press CTRL-ALT-BACKSPACE fo
terminate X.

Text-Mode and GUI Methods of Shutting Down

Shutting down the computer allows you to safely power it off. You have to be logged
in as root to shut down the computer (an ordinary user login followed by su to acquire
root privileges also works). The command involved is called shutdown. You can issue
it from a text-mode login or from an xterm inside X. Its syntax is

I shutdown [options] time [warning-message]

The time is the time when the system shuts down, and it can take one of three forms:

B now The string now represents an immediate shutdown. You might use this
time specification to shut down a workstation that’s being used by a single person.

B +number To schedule a shutdown some number of minutes in the future,
specify the number of minutes by preceding it with a plus sign. For instance,
+30 indicates a shutdown in half an hour.

Chapter 3: An Overview of the System

B yymmddhhmm To schedule a shutdown for a particular time, specify it as a ten-
digit number, starting with a two-digit year and moving down through the month,
day, hour, and minute. (You must use a 24-hour format for the hour.)

The optional warning-messageis a text message that appears on all users’ text-mode
login consoles starting at ten hours before the scheduled shutdown time. For instance,
you might pass "Shut down for disk upgrade; up at 7:00 AM" as the warning
message, to let users know why the system is being shut down and when they might
expect it to be up again.

Finally, but appearing immediately after the shutdown command when you type
it, the program accepts any of several options. These are:

B -h The system is halted after the shutdown. This form of shutdown enables
you to power off or reboot the computer manually.

B -p The system is halted and powered off after the shutdown. This option
requires that your hardware support software-controlled power off, as do most
modern computers. (Some older systems don’t support this.)

B -r The system is halted and rebooted after the shutdown. You might use this
option to reboot into another OS, or after making changes to the FreeBSD kernel.

B -k This option kicks all users off the system and disallows further logins, but
doesn’t actually shut down the system. You might do this if you want to make
extensive software changes or perform tests in a controlled environment.

B -o Theshutdown procedure with -h, -p, or -r normally involves the shutdown
process calling init, which does the actual work. This option causes
shutdown to do the work itself. It's normally not required.

B -n This option can be used in conjunction with -o, and causes shutdown
to skip flushing the filesystem cache. This method can cause disk corruption,
so it’s not something you’d normally want to use.

B - (Dash) If you include a single dash as an option, shutdown prompts
you for a warning message rather than using one you provide on the same
command line.

After you issue a shutdown command, FreeBSD reverses many of the steps it took
during startup. FreeBSD terminates any running programs, including X, any servers
that are running, and so on. The system unmounts network filesystems and partitions
it’s mounted, and then performs whatever shutdown action you specified. If you used
-h, you'll see a message stating that the system has been halted; at that point, you can
power it off or reboot it by pressing the Reset switch on the computer’s case. If you used
-p or -r, the system automatically powers down (if your hardware supports this option)
or reboots, respectively.

An alternative to the shutdown command is to press CTRL-ALT-DELETE at the
console’s keyboard. This action shuts down and reboots the FreeBSD system, and

95

96

FreeBSD: The Complete Reference

you may find it easier to remember this keystroke than the details of the shutdown
command. This alternative may therefore be a good one if the system is a workstation
used by inexperienced users. Of course, if the intent is to shut down rather than reboot
the computer, you'll have to hit the power switch before FreeBSD begins booting, or
you'll risk file corruption. Some replacements for the XDM GUI login program enable
users to shut down the computer from the console. These programs provide a shutdown
option from a button or menu item. Both the GDM and KDM programs (parts of the
GNOME and KDE environments, respectively) provide this option.

When to Shut Down

If you participate in Usenet newsgroup or mailing list discussions, sooner or later you'll
come across a perennial debate: When is it appropriate to shut down a computer? The
two schools on this issue are the never-shut-it-down school and the shut-down-to-
save-power school.

The argument against shutting down a computer is that component failures are
most likely to occur because of the stresses involved in turning devices on and off. The
changes in heat and voltage put more wear and tear on a device than does constant
operation. Consider light bulbs. They usually fail when you apply power, not when
they’ve been turned on for a while. The same is true of computer components, so the
lifetime of a computer may be extended by leaving it on all the time.

An opposing view holds that the extended life you might gain from leaving a
computer on at all times is minor, particularly when you consider that the components
in question are likely to become obsolete long before they fail. Leaving the computer on
continuously consumes power, though, and the power savings is more important (by
this argument) than the extension in component life.

Both of these arguments have merit, and you’'ll have to decide between them for
yourself. One further factor, though, lies in the FreeBSD automatic maintenance tools.
FreeBSD runs certain programs late at night to handle some routine maintenance issues,
such as cleaning old files out of the /tmp directory, as described in Chapter 28. Thus, if
you decide to routinely shut down your computer at night, you should leave it running
overnight every once in a while.

Of course, all of this assumes that you're running a workstation. Most servers need
to run 24 hours a day, 7 days a week, and so are shut down only for hardware upgrades,
repairs, or the like.

Summary

FreeBSD is distinguishable from Windows soon after you press the power switch on
the computer. The FreeBSD startup sequence produces a great deal of textual output,
summarizing the steps it’s taking while booting your system. After this, the default
FreeBSD configuration presents a text-mode login screen, and logging in lets you run
text-mode programs. FreeBSD’s UNIX heritage makes it important that you understand

Chapter 3: An Overview of the System 97

at least some of these commands, such as those to view and manipulate files. To run
GUI programs, you must start X by typing a single command (startx), which loads X
and whatever X environment you've chosen as the default or configured for yourself as
an individual user. Some FreeBSD GUI environments are very similar to those of
Windows or other GUI OSs, so if you're familiar with such tools, you shouldn’t have
too much trouble adjusting to FreeBSD. When you're done, you should log off of your
account to reduce the risk of it being abused by a passer-by. When you need to turn the
computer off or reboot it, you should be sure to use a proper shutdown procedure,
rather than simply hitting the power switch or Reset button.

