6524 BSD Chapter 18 7/1/02 4:08 PM Page 423 $

SYSTEM PERFORMANCE

“It’s slow.” That’s one of the most dreaded phrases a systems
administrator can hear. The user doesn’t know why the system is

slow—it just “feels” that way. Usually there’s no test case, no set of
reproducible steps, and nothing particularly wrong. These two words

can cause the systems administrator hours of work, digging through the sys-
tem trying to figure out what’s going on.

One phrase is still more dreadful, especially after you've invested those
hours debugging the problem: “It’s still slow.” For an inexperienced systems
administrator, slow systems are easy to accelerate: Buy faster hardware. This gen-
erally fixes speed problems. It also costs a lot of money and simply conceals
whatever’s wrong, without really using the equipment you have.

FreeBSD includes many tools designed to help you examine system per-
formance, and to give you the information you need to actually find out what’s
slowing things down. That will tell you what you need to do to fix the problem.
You might very well need faster hardware, but you can quite possibly shift the
load around within a system and improve overall performance. The first step is
to understand what your problem really is.

6524 BSD Chapter 18 7/1/02 4:08 PM Page 424 $

Computer Resources

Speed problems are generally caused by running more on a computer than the
computer can handle. That seems obvious, but think about it a moment. What
does that mean?

A computer has four basic resources: disk input/output,' the network band-
width, memory, and CPU. If any one of these is filled to capacity, the others
cannot be used to their maximum effect. For example, your CPU might very
well be waiting for a disk to deliver data or for memory to finish paging. A
faster CPU won’t increase system performance in this case.

Simply upgrading hardware when the system slows down does fix speed
problems, but not in the way that you might think. If you have a program that
fills up the system memory, buying a new system with a faster CPU will probably
fix the problem. A new system probably has more memory than the old one,
after all!

By identifying what the system is running short on, and addressing only that
need, you can stretch your existing hardware much further. After all, why buy a
whole new system when a couple hundred dollars of memory will fix the prob-
lem? (Of course, if your goal is to rotate this “slow” system into place as your
new desktop, that’s another matter.)

Perhaps you can reschedule work; one common cause of system slowdowns
is running multiple large programs simultaneously. For example, I once sched-
uled a massive database log rotation that moved and compressed gigabytes of
files at the same time as the system’s automated daily checks. Since the job
required shutting down the main database, and hence created system downtime,
speed was crucial. Performance on both processes slowed unbearably. Resched-
uling the log job greatly reduced downtime.

We’re going to examine several FreeBSD tools for examining what a system
is doing. Armed with that information, we’ll consider how to fix some perform-
ance issues. We have separate tools to examine each of the potential bottlenecks.

FreeBSD changes continually, and later systems might have new tuning and
performance features. Take a look at tuning(7) on your system to find any new
performance tips. We’'ll cover tuning information that is useful on any FreeBSD
(and almost any UNIX) system.

m One word you’re going to keep stumbling across in this chapter is “abnormal.” As the
systems administrator, you're supposed to know what is normal for your system. It’s
somewhat like art: You might not be able to define normal, but you need to recognize it
when you see il. It’s a good idea for you to use these tools to check your systems regularly
when they’re behaving correctly, so you will have a good idea of what is out of whack
when the system slows down. We'll also look at some long-term monitoring tools, so you
can gauge system performance over months or years.

' Technically, network bandwidth is part of input/output. However, it’s special
enough that we’ll treat it separately.

424 Chapter 18

e

6524 BSD Chapter 18 7/1/02 4:08 PM Page 425 $

Disk Input/Output

We looked at disk operations in some detail in Chapter 16. When it comes to
performance, disk speed is usually a big bottleneck. If programs are waiting for
disk activity to complete before proceeding, they will slow your system down.
(This is commonly called “blocking on disk,” meaning that the disk is blocking
program activity.) The only real solution for this is to use a faster disk or a RAID
array, or to split your disk activity between two disks.

How do you know if your disk is actually blocking program activity? We’ll
look at that in “Using Vmstat,” later in the chapter.

Network Bandwidth

If your system performance slowdown is due to network problems, you need
more bandwidth. In short: You can only push as much bandwidth as you have. If
your T1 is full, you need more bandwidth. If your system cannot fill the existing
bandwidth, use the tools discussed in Chapter 5 to increase system capacity.

To check for this problem, begin by monitoring how much bandwidth your
system is using. Chapter 15 discusses how to generate long-term graphs of band-
width usage. We also discussed networking in Chapter 5. Consult netstat -m,
and increase your kernel’s NMBCLUSTERS, as described in Chapter 4. That’s
really all there is to it.

Other system conditions are more complicated.

CPU and Memory

The top(1) tool is a good place to start if you're examining a system that seems
to be running slowly. It provides a good overview of system status, but it only
shows information about the CPU and memory usage; input/output and band-
width are not touched.

Using Top

To read a top display, you must understand a great deal about how the system
works, so we’ll spend a good chunk of time on this. To run top, just type top. To
display kernel processes as well as user programs, use top -S. You'll see a display
much like the following, and it will refresh every few seconds.

© last pid: 436; @ load averages: 0.14, 0.08, 0.07 © up 0+01:06:16 08:12:26
O 46 processes: 3 running, 43 sleeping
© (CPU states: 1.2% user, 0.0% nice, 0.8% system, 0.0% interrupt, 98.1% idle
O Mem: 70M Active, 102M Inact, 26M Wired, 6016K Cache, 41M Buf, 107M Free
@ Swap: 200M Total, 200M Free
(&)
PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
287 mwlucas 2 5 2892K 2136K select 0:13 0.10% 0.10% xsysinfo

(continued on next page)

System Performance 425

e

6524 BSD Chapter 18 7/1/02 4:08 PM Page 426 :E

378 mwlucas 2 0 101M 64920K RUN 0:08 0.10% 0.10% soffice.bin
376 mwlucas 2 0 35372K 32736K RUN 0:13 0.05% 0.05% mozilla-bin
274 mwlucas 2 0 28208K 26304K select 1:01 0.00% 0.00% XFree86
170 root 2 0 912K 508K select 0:08 0.00% 0.00% moused
277 mwlucas 2 0 3888K 3116K select 0:03 0.00% 0.00% wmaker
5 root 18 0 oK 0K syncer 0:00 0.00% 0.00% syncer
430 mwlucas 28 0 1912K 1160K RUN 0:00 0.00% 0.00% top
399 mwlucas 2 0 4500K 4000K select 0:00 0.00% 0.00% Eterm

Very tightly packed, isn’t it? Top tries to cram as much data as possible into a
standard 80-character by 25-character terminal window. The display updates
every two seconds, so you have a fairly accurate, close to real-time, view of your
system. We’ll take this a piece at a time and explain what every entry means.

PID Values

Every process on a UNIX machine has a unique process ID or PID. Whenever a
new process is started, it is assigned a PID one greater than the previous
process. The last pid value is the last process ID used in the system. In the pre-
vious example, the last pid is 436 (@). The next process to be created will be
437, then 438, and so on. You can watch this increment to see if an abnormal
number of processes is being created. Hopefully, you've looked at your system to
see how quickly this number rises when things are running well. If the last pid
value keeps climbing rapidly, programs are being started and stopped very
quickly. This might indicate some daemon that keeps crashing, or a user trying
to start too many programs.”

Load Average

The load average (@) is a somewhat vague number that’s intended to give a
rough impression of the amount of load on the system.” The load average equals
the average number of processes waiting for CPU time, plus the average num-
ber of jobs that are waiting for access to the disk. An acceptable load average
depends on the system; if the numbers are abnormally high, you should investi-
gate. Many 486s feel bogged down at a load average of 3, while some modern
systems feel snappy at a load average of 10.

Top lists three load averages. The first (0.14 in our example) is the load
average over the last minute, the second (0.08) is for the last 5 minutes, while
the last (0.07) is for the previous 15 minutes. If your 15-minute load average is
high, but the I-minute load is low, you had a major spike in activity that has
passed. How well did your system hold up? On the other hand, if the 15-minute
value is low, but the 1-minute average is high, something happened within the
last 60 seconds and may still be going on now. If all of the load averages are
high, the condition has persisted for the whole 15 minutes.

*Some users actually try to use up system resources by starting programs. This is
called a forkbomb. These users are like script kiddies, but not as educated.

426 Chapter 18

e

6524 BSD Chapter 18 7/1/02 4:08 PM Page 427 $

Uptime

The last entry on the first line is the uptime (@), or how long the system has

been running. The system in our example has been up for one hour and six
minutes, and the current time is 08:12:26. I'll leave it up to you to figure out
when the system booted.

Process Counts

On the second line you’ll find information about processes that are currently
running on the system (@). Running processes are actually doing work; they’re
answering user requests, handling mail, or whatever else is going on. Sleeping
processes are waiting for input from one source or another, and are just fine.
Processes in other states are usually waiting for a resource to become available,
or are hung in some way. Large numbers of nonsleeping, nonrunnable
processes can be a hint of trouble. Investigate further to find out which
processes those are.

Process Types

The CPU states line (@) indicates what percentage of available time the CPU
spends handling different types of processes and other duties. It shows five dif-
ferent process types: user, nice, system, interrupt, and idle.

User processes are average everyday programs; they could be daemons run by
root, commands run by regular users, or whatever. If it shows up on the list of
system processes (that is, on ps -ax), it’s a user process.

Nice processes are those whose priority has been deliberately manipulated by
the user. We’ll look at this in some detail in “Reprioritizing with Niceness.”

System processes are in the kernel, and they include things such as virtual
memory handlers, running networking, writing to the disk, and so on.

The interrupt category shows how much time the system spends handling
interrupt requests (IRQs).

Lastly, the idle process shows how much time the system spends doing
absolutely nothing. If your system CPU regularly has a very low idle time, you
might want to start thinking about rescheduling some jobs or getting a faster
processor.

When you're working on a multi-CPU system, keep in mind that top displays the
average usage among all the processors. You might have one processor completely tied
up compiling something, but if the other processor is idle, top will show only 50 percent
usage.

Memory

Then we have the Mem line, representing actual physical RAM (@). Unlike
Windows, which simply divides memory into “used” and “unused” categories,
FreeBSD uses memory in several different ways.

Active memory is the total amount of memory in use at the moment for
running user programs and their data. When a program ends, the program
information is put into inactive memory and the data pulled from the disk is put
in the cache memory.

Similarly, the Buf entry shows the size of the memory buffer. The memory
buffer contains data recently called from disk.

System Performance 427

e

6524 BSD Chapter 18 7/1/02 4:08 PM Page 428 $

Free memory is unused.

Wired memory is memory used for in-kernel data structures, as well as for
particular system calls that must have a particular piece of memory immediately
available. Wired memory is never swapped out.

Swap

Then we have the Swap line, (@), which simply represents the total swap available
and how much is in use. Swapping is when the system uses the disk drive as addi-
tional memory. We’ll look at swap in more detail later in the chapter.

Process List

Finally, we have a list of the processes on the system and their basic characteris-
tics (@). The table format is designed to present as much information as possi-
ble in as little space as possible. Every process is on its own line. Let’s look at
each column in the following sections.

PID First we have the process ID number, or PID. Every process running on
the system has a unique PID. When you issue kill commands, you use the PID to
identify the process you want to affect.

Username Next is the username of the person running the process. If multi-
ple processes consume large chunks of CPU or memory, and they are all owned
by the same user ID, you know who to talk to.

Priority and Nice The PRI (priority) and NICE columns are interrelated, and
indicate how much precedence the system gives these processes. We’ll talk about
priority and niceness a little later in the chapter.

Size Size is the amount of memory that the system has set aside for this
process.

Resident Memory The RES column shows how much of the program is actu-
ally in memory, or resident, at the moment. A program might have a huge
amount of memory reserved for it, but only be using a small fraction of it.

State The STATE column shows what the process is doing at the moment.
Processes can be in a variety of states at any given time: waiting for input, sleep-

ing until something wakes them, actively running, and so on.

Time The TIME column gives the total length of time that the process has
been running.

CPU Usage The WCPU column gives a weighted CPU usage that shows the
percentage of CPU time that the process is using, as adjusted for the process’s
priority and niceness. The CPU column shows what percentage of CPU time the

program is actually using.

Command Name Finally, in the COMMAND column, we have the program name.

428 Chapter 18

e

6524 BSD Chapter 18 7/1/02 4:08 PM Page 429 $

Memory Usage

If your system is running slowly, check its memory and CPU usage first. While
they’re no more likely to be running amok than any other part of the system,
they’re the easiest to measure. Let’s discuss memory first.

FreeBSD errs on the side of caching recently accessed data because a sur-
prising amount of information is read from disk time and time again. If this
information can be cached in physical memory, it can be accessed very quickly.
If the system needs more memory, it dumps the oldest cached chunks in favor
of new data.

For example, the example top output we’re discussing is from my laptop,
which is using a lot of buffer and inactive memory. Part of that is due to my
Web browser. I started Mozilla when I booted the system yesterday morning so I
could check my morning comics.’ For a couple of moments, the disk light stayed
solidly lit while the system read the program off the disk. I then shut the
browser down so I could do some work.

Since this Web browser was accessed, it sat in the system buffer cache.
When I started the browser again this morning, it only had to be called out of
cache rather than from disk, so it started much more quickly. Had I started
some other large process, it would have dumped that Web browser from the
cache to read in more data.

If your system is operating well, you will have at least a few megs of free
memory. If you have more than a few megs free, your system is not being used
to nearly its full potential. In the example earlier, I could get rid of 128MB of
RAM and not affect system performance much at all.

If you have a good chunk of memory in cache or buffer, you don’t have a
memory shortage. You might make good use of more memory, but it isn’t
strictly necessary. Similarly, if you have a lot of free memory, you probably don’t
have a memory shortage. If active and wired memory is consuming most of your
available memory, more RAM wouldn’t hurt.

When you’re out of free space, and have little or no memory in cache or
buffer, you should investigate your memory use further. You may well have a
memory shortage. Take a look at the “Using Vmstat” section later in the chapter
to check.

Swap Space Usage

Virtual memory, or swap helps cover brief RAM shortages. For example, if
you’re untarring a huge file, you might easily fill up all your physical memory
and have to start using virtual memory. It’s not worth buying more RAM for this
occasional use when swap suffices.

Like memory cache, swap caches data that it has handled recently, and once
you’ve touched swap, it never returns to being free. For example, I have a server
that has been up for 772 days at this writing. At one point, I used about a hun-
dred megs of swap to handle a massive compile. My top display still shows that
I'm using that 100MB of swap, while I have over 200MB of memory free.

?Sluggy Freelance (www.sluggy.com) and Help Desk (www.ubersoft.net), if any-
one cares.

System Performance 429

e

6524 BSD Chapter 18 7/1/02 4:08 PM Page 430 $

430

Chapter 18

Using swap space is not a bad thing, especially since a program will typically
spend 80 percent of its time running 20 percent of its code. Since much of the
rest of that time spent running is startup, shutdown, and error code, you can
safely let those bits go to swap space and have minimal impact.

So don’t worry if you find that you’re using a bit of swap space on occasion.
But, if you're constantly using swap, you probably need more memory.

CPU Usage

A processor can do only so many things a second, and if you want to do more
than your CPU can handle, the requests will start to queue up. You’'ll develop a
processor backlog, and the system will slow down. That’s CPU usage in a nutshell.

If top shows your CPU hovering around 100 percent all the time, you must
take action. While new hardware is certainly an option, you do have other
choices. For one, investigate the processes running on your system to see
whether they’re all necessary. Did some junior administrator install the
SETI@Home client (/usr/ports/astro/setiathome) to hunt for aliens with spare
CPU cycles? Are there things running that were important at one time, but are
now unnecessary? Find and kill those unnecessary processes and make sure that
they won’t start the next time the system boots.

Once that’s done, evaluate your system performance again. If you still have
a problem, try rescheduling or reprioritizing.

Rescheduling

Rescheduling is easier than reprioritizing, and it is a relatively simple way to bal-
ance system processes so that they don’t load up on CPU time. As discussed in
Chapter 9, you can use cron(1) to schedule system tasks for various times, but
users can use it too. If you have users who are running massive compile jobs or
doing huge database queries, you might consider using cron to schedule them
to run at night. Frequently, jobs such as the monthly billing database search can
be run between 6 PM and 6 AM, and nobody will care. Similarly, you could
schedule your make buildworld && make buildkernel to start at 1 AM.

Reprioritizing with Niceness
If rescheduling won’t work, you’re left with reprioritizing, which is a bit trickier.
When reprioritizing, you tell UNIX to change the importance of a given process.
For example, if you want a software install to run, but only when nothing
more important is running, you reprioritize it with “niceness,” which is simply a
relative measure of how much CPU time a process demands. The nicer a
process is, the less CPU time it demands. The default niceness is 0, but niceness
runs from 20 (very nice) to -20 (not nice at all). (This might seem backwards;
you could argue that a higher number should mean a higher priority. That leads
to a language problem, though, as calling this factor “crankiness” or “greed”
didn’t seem like a good idea at the time.)"

*This might be one of the few circumstances where common sense won out in
naming UNIX commands.

e

6524 BSD Chapter 18 7/1/02 4:08 PM Page 431 :E

In the top display seen earlier (in the “Using Top” section) you saw a PRI
column for process priority. FreeBSD calculates a process priority by combining
a variety of factors, including niceness, and runs high-priority processes first
whenever possible. Niceness affects priority, but you cannot directly edit prior-
ity.

If you know that your system is running low on CPU capacity, you can
choose to start a command with nice(1) to assign the command a priority.
Specify the desired niceness level by putting a single dash in front of the com-
mand. For example, to start a make buildworld at nice 15, you would run this
command:

cd /usr/src
nice -15 make buildworld

Only root can assign a negative niceness to a program. To run a program with
negative niceness, use a double dash (nice --5). For example, if you have a criti-
cal kernel patch that must be applied as soon as possible, and you want the com-
pile to finish as quickly as possible, use a negative niceness like so:

cd /sys/i386/compile/MYKERNEL

nice --20 make depend &% nice --20 make all install

Usually, you won’t have the luxury of telling a command to start off nicely, but
will instead need to change a process’s niceness on the fly (generally, when you
find out that it’s soaking up all your CPU). You can do so with renice(8), which
will reprioritize by process ID or owner. To change the niceness of a process ID,
you run renice with the new niceness and the process ID.

For example, one of my systems has a FreeBSD CVSup mirror. If I find that
the mirror is taking up so much CPU time that it’s getting in the way of things I
have to do, I can change its niceness to 20. The maximum niceness we can use is
20, which basically tells the system to run this command only if nothing else at
all wants CPU time. To renice a running process, I first need to know its process
ID. I know the process is named cvsupd because I've looked at this system’s top
output over the last several months. I then look at all the processes running on
the system, and pull out the one for cvsupd with the following command:
ps -ax | grep cvsupd

322 7 Is 0:00.01 /usr/local/sbin/cvsupd -C 5 -b /test2 -s sup

The first column in the preceding ps output is the process ID, PID 322. Now to
renice it, I would enter the following:
L
322: old priority 0, new priority 20

System Performance 431

6524 BSD Chapter 18 7/1/02 4:08 PM Page 432 :E

Boom! The cvsupd daemon will now only run when nothing else requiring sys-
tem time is running. This will greatly annoy users of the service, of course, but I
presumably have a good reason for doing so. (Since this is a private mirror, not
a public one, I feel no particular need to be kind to my users.)

To renice every process owned by a user, use the -u flag. For example, to
make my processes more important than anyone else’s, I could enter this com-
mand:

renice -5 -u mwlucas
1000: old priority 0, new priority -5

The 1000 is my user ID number on this system. Again, presumably I have a very
good reason for doing this besides a need for personal power.”

Renicing, rescheduling, and process management don’t create additional CPU time, they
simply rearrange the CPU time you do have. If you cannot reschedule processes, and you
cannot satisfactorily renice things to tune the way the system behaves, you really do need
faster or additional hardware. Some systems have an extra motherboard slot for an
additional CPU, which is a quick and inexpensive way to boost performance when the
system is CPU-bound. If you have multiple CPUs, definitely take a look at the discussion
of SMP in Chapter 11.

When Swap Goes Bad

432

Chapter 18

I said earlier that using swap space isn’t bad in and of itself because swap space
is used as virtual memory. (In other words, memory space on the hard drive is
being used in the same way as RAM.) Swap space is much slower than chip
memory, but it does work in a pinch, and many programs don’t need to have
everything in RAM in order for them to run. If programs spend 80 percent of
their time in 20 percent of their code, then 80 percent of their bulk can be put
into swap space without seriously impacting performance.

Many sysadmins use the term swapping generically, lumping two different
activities (paging and swapping) together without understanding the crucial dif-
ference between them.

Paging

When you read about virtual memory, you'll see references to pages. A page is
simply a section of memory, 4KB on x86 hardware under FreeBSD. (Different
platforms have different page sizes.)

Data moves between real and virtual memory in units of pages. Paging hap-
pens when a portion of a running program is moved onto swap. This process
can actually improve performance on a heavily loaded system because unused
bits can be stored on disk until they’re needed.

®Being a selfish person doesn’t qualify as a good reason. Or so I've been told.

e

6524 BSD Chapter 18 7/1/02 4:08 PM Page 433 :E

Swapping

Swapping describes what happens when an entire runnable process is moved
into swap. If the computer doesn’t have enough physical memory to store a
process that isn’t being run at that particular microsecond, the system can move
the entire process to swap. Then, the next time the CPU runs that process, the
process’s memory is moved from swap into physical memory, and some other
process is probably consigned to swap.

The problem with swapping is that disk usage goes through the roof and
performance drops drastically. Since requests take longer to handle, there are
more requests of the system at any one time. And logging in to check the prob-
lem only makes the situation worse, because logging runs an extra system
process. This performance hit is sometimes called the death spiral.

Memory shortages will hurt system performance more than anything else. If
you're frequently swapping, you must get more memory or resign yourself to
lousy® performance.

Every system has bottlenecks, or places where performance is limited. If you eliminate one
bottleneck, performance will increase until another bottleneck is hit. The system will work
at the fastest speed allowed by the slowest component in the system, also called bounds.
For example, a Web server is frequently network-bound because the slowest part of the
system is the Internet connection. If you upgrade the Internet connection, the system will
hand out Web pages as fast as either its CPU or disk allows.

Are You Swapping or Paging?

FreeBSD includes several programs for examining system performance. Among
those are vmstat(8), iostat(8), and systat(1). We’ll discuss vmstat because I find it
to be the most helpful. Iostat is similar to vmstat, and systat provides similar
information in a more graphic format.

Using Vmstat

Vmstat(8) shows virtual memory statistics at the current time. While its output
takes some getting used to, it is very good at showing large amounts of data in a
very small space. Type vmstat at the command prompt, and follow along.

vmstat

procs memory page disks faults cpu
rbw avm fre flt re pi po fr sr ad4 da0 in sy cs us sy id
000 7096 479140 21 0 O O 9 O O O 331 102437 0 199
#

The display is divided into six sections: process (procs), memory, paging (page),
disks, faults, and cpu. We’ll look at each then quickly and then dive into detail
on the bits that are most important for investigating your performance issues.

T would use a better word than “lousy,” but my editor frowns upon the flavorful
language I learned from an ex-sailor co-worker.

System Performance 433

e

6524 BSD Chapter 18 7/1/02 4:08 PM Page 434 $

Processes

There are three columns under the procs heading.

r Lists the number of processes that are waiting to run on the CPU. These
are processes that are ready to run, but which simply cannot get access to
the CPU to execute. If this number is high, your CPU is bottlenecking
your system.

b Gives the number of processes that are blocked waiting for system input
or output—generally, waiting for disk access. These processes will run as
soon as they get their input. If this number is high, your disk is the
bottleneck.

W Shows processes that are runnable but are entirely swapped out. If you
start having processes swapped out on a regular basis, your memory is
inadequate for the work you are doing on the system.

Memory

The memory section has two columns.

avm Shows the average number of pages of virtual memory that are in use. If
this value is abnormally high or increasing, your system is using up
virtual memory.

fre Shows the number of pages that remain available for use. If this value is
abnormally low, you have a memory problem.

Paging

The paging section shows how hard the virtual memory system is working.

flt Shows the number of page faults, where the information needed is
not in memory and needs to be fetched from the disk.

Te Shows how many pages have been reclaimed or reused from cache.

pi Short for pages in, it shows how many pages are moving from

physical memory to swap.

po Short for pages out, it shows how many pages are moving from swap
to real memory.

frand st Show how many pages are freed and scanned per second,
respectively. You don’t have to worry about these too often, unless
your system is under very heavy memory load.

434 Chapter 18

6524 BSD Chapter 18 7/1/02 4:08 PM Page 435 $

Disks

The disks section shows each of your disks by device name. The number shown
is the number of disk operations per second. You should divide your disk opera-
tions between different disks whenever possible, and arrange them on different
buses (as discussed in Chapters 1 and 13). If one disk is obviously busier than
the others, and the system has operations waiting for disk access, consider mov-
ing some frequently used files from one disk to another.

Faults

The faults section shows system faults. Faults, in this case, aren’t bad, they’re just
received system traps and interrupts.

in Shows the number of system interrupts (IRQ requests) the system
received in the last five seconds.

sy Shows the number of system calls in the last five seconds.

cs Gives the number of context switches, or times the CPU changed from

doing one thing to doing another.

CPU

Finally, the CPU section shows how much time the system spent doing user
tasks (us), and system tasks (sy), and how much time it was idle (id). This is the
same information presented by top.

Making Use of vmstat Information

So, how do you use this information? First, check the first three columns to see
what the system is waiting for when it’s slow. If you're waiting for CPU access
(the r column), then you’re short on CPU horsepower. If you're waiting for disk
activity (the b column), then your disks are your bottleneck. If you’re swapping
(the w column), then you’re short on memory. Simple enough, eh?

If you're having problems with memory, you can expect the page section to
have very high values. (The details of virtual memory management are an arcane
science that I won’t cover in depth here.) They key is to know what your system
normally looks like, and hence what would be abnormal.

Monitoring Multiple Disks

Vmstat shows what’s happening on your disks and where data is being written.
The number of disk operations per second is a valuable clue to how well your
disks are handling their load.

However, if you have a lot of disks, you may notice that they don’t all appear
on the vmstat display. Vmstat is biased toward fitting into an 80-column display,
and hence cannot list every possible disk on the system. If you don’t mind over-
flowing 80 columns, you can use vmstat’s -n flag to set the number of drives you
want to display. The 80-column limit is important on a system console, but it
can easily be overcome when you’re using SSH from a workstation.

System Performance 435

e

6524 BSD Chapter 18 7/1/02 4:08 PM Page 436 :E

Continuous Vmstat

When using vmstat, you're probably more interested in what’s happening over a
period of time than in taking a brief snapshot. Use vmstat with the -w flag to
run it as a continuously updating display and to specify the number of seconds
between updates. Many internal system counters are recalculated every five sec-
onds, so five seconds is the minimum recommended time between updates.

vmstat -w 5

procs memory page disks faults cpu
rbw avm fre flt re pi po fr sr ado mdo in sy cs us sy id
100 165208 51408 431 0 O 0408 4 0 0O 243 2656 255 13 3 83
000 165208 51408 8 0 0O O O O O 0 267 829232 0 2097
100 172480 51408 9 0 0 0 2 0 0 0 277 986 279 2 197
100 174584 51108 44 O O 0 21 0 O O 2623694 269 1 3 96

Press CONTROL-C when you're done, and just sit and watch your system do its
work, and see how it reacts when scheduled jobs kick off. In the preceding
example, we have the occasional moment where processes are waiting on CPU
time (as shown by the intermittent 1 in the r column), but the disk and memory
all seem to be behaving well. An occasional wait for some resource doesn’t mean
that you need to upgrade that system component; if performance is acceptable,
don’t worry about it.

Real-World Performance Tuning

All this theoretical stuff is nice, but how do you troubleshoot performance in
real life? At this point, I hope you've actually read the previous chapters of this
book, as we're going to be referring to information brought up in all sorts of dif-
ferent places. We’ll use a real-world test on a real-world system to demonstrate
how performance troubleshooting works.

The standard FreeBSD torture test is the make world process run during an
upgrade from source. It pounds on the CPU and the disk, and absorbs all the
memory it can get its greedy hands on. We’ll focus on the make buildkernel
stage of this process because it’s shorter than the make buildworld stage, which
makes for a better test. Let’s see how we can use the techniques and information
presented here to reduce the total time needed to run the build.

The system I'll be using for the test has two 1 GHz Pentium CPUs, a new
60GB IDE drive, two somewhat elderly 4.5GB SCSI-2 drives, and 512MB of
RAM. It’s running a few smaller programs as well, but there is no X server, win-
dow manager, or Web server. Initially, the system is installed on the one IDE
disk; the SCSI disks are completely idle. The install is fairly default, with soft
updates (see Chapter 16) set on the /usr partition.

436 Chapter 18

6524 BSD Chapter 18 7/1/02 4:08 PM Page 437 :E

Fairness in Benchmarking

Benchmarking is a difficult task. We're not officially benchmarking here, but
we’ll still do some things to make sure that each run of our test is as fair as pos-

sible. I'll reboot the system between tests to eliminate anything that might be

lurking in the buffer cache. In this case, we want to improve performance our-

selves, not use FreeBSD’s buffering and caching to do it for us. Similarly, I'll
remove /usr/obj (where the buildkernel creates its files) between runs.

While make buildkernel is a fairly standard sort of test, don’t assume that it is the be-
all and end-all of FreeBSD performance. I'm using it here because it’s a standard
process, and everyone has access to it. Test performance on your systems using programs

and commands that you actually use, not arbitrary benchmarks.

The Initial Test

To begin, we’ll record datestamps from the beginning and end of each run. This

will give us an absolute measurement of how any changes affect performance:

This command records the start and stop times in a file called timestamps, and

runs make buildkernel.

Now start the build and look at top, the first few lines of which are shown

here:

up 0+01:00:43 12:14:17

last pid: 6262; load averages:

0.87,

46 processes: 2 running, 44 sleeping

CPU states: 21.2% user,

0.0% nice, 29.4% system,

0.37,

0.15

0.6% interrupt, @ 48.8% idle

Mem: 16M Active, 38M Inact, 36M Wired, 2240K Cache, 61M Buf, @ 407M Free

Swap: 2048M Total, 2048M

PID USERNAME PRI NICE

529 root 96 0
275 root 96 0
354 root 96 0
223 root 8 0
252 root 96 0

Free

SIZE
2420K
1020K
2420K
1084K
2364K

RES
1956K
588K
1956K
688K
1676K

STATE
ect
ect
ect
slp
ect

TIME
0:01
0:08
0:00
0:00
0:00

WCPU
0.10%
0.00%
0.00%
0.00%
0.00%

CPU COMMAND
0.10% sshd
0.00% moused
0.00% sshd
0.00% diskcheckd
0.00% sshd

You can see right away that the system is not short on memory; with 407MB
free (@) it should be good for quite some time. The CPU is 48.8 percent idle
(@), so a lack of processor time does not appear to be the bottleneck.

System Performance 437

6524 BSD Chapter 18 7/1/02 4:08 PM Page 438 :E

Let’s look at a snippet of vmstat output, updated every five seconds:

vmstat 5
procs memory page disks faults cpu
rbw avm fre flt re pi po fr sr ad4 da0 in sy cs us sy id
020 17952 396524 173 0 0O 0199 0 0 0 354 385630 2 2096
210 18872 394908 2260 O 0 02281 O 31 O 369 2682 2342 37 16 47
220 19268 394384 1801 O O 01856 O 2 0O 336 2107 1687 40 12 48
020 19164 393768 2074 O O 02143 0 15 O 353 2617 2162 32 14 53
220 21680 389032 2045 O O 01892 0 1 O 337 2349 1908 40 12 47
020 16096 393452 1916 O O 02242 O 1 0 338 2281 2240 39 14 47
220 17888 390616 2260 O O 02236 O 1 O 342 2830 2844 35 17 47
120 183880 389728 2260 O O 012337 0 30 O 370 2804 2909 35 19 46
020 16484 391684 2031 0 0 012234 0 1 0 338 2477 2183 37 16 47
120 18416 389052 2230 O O 02219 O 11 O 352 2886 2876 33 18 49

Okay, something is definitely not correct here. The r column shows how many
processes can be run but that can’t get CPU time. Our system is almost 50 per-
cent idle, yet some processes cannot get CPU time! What’s going on?

Well, this is a multiple-processor system. Remember, a CPU does only one
thing at a time. What we see here is that one CPU at a time is actually full, while
the other isn’t doing anything at all. The solution is to split the load between
our CPUs. We can do this in a make with the -j flag, as discussed in Chapter 6.
Thatll be our next test.

When the make buildkernel finishes, take a look at the times to set our
benchmark:

#fmore timestamps
Sun Aug 19 12:11:47 EDT 2001
Sun Aug 19 12:23:43 EDT 2001

Just 4 seconds under 14 minutes, or 716 seconds. That’s our benchmark; can we
beat it?

Using Both CPUs
Let’s try using both our processors to see what happens to the time.

We could use numbers over 2 for -j, but 2 is a good place to start. In theory,
this should use much more of our CPU.

438 Chapter 18

6524 BSD Chapter 18 7/1/02 4:08 PM Page 439 :E

Let’s see how theory compares to reality:
last pid: 3855; load averages: 1.08, 0.36, 0.16 up 0+00:07:18 12:36:45
51 processes: 1 running, 47 sleeping, 1 zombie, 2 mutex
CPU states: 23.0% user, 0.0% nice, 41.2% system, 0.0% interrupt, @ 35.8% idle
Mem: 16M Active, 14M Inact, 29M Wired, 8K Cache, 51M Buf, 442M Free
Swap: 2048M Total, 2048M Free

PID USERNAME PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND

2016 root 8 0 612K 512K t 1 0:01 1.46% 1.22% cc

282 root 96 0 1020K 588K ect 1 0:01 0.00% 0.00% moused
1653 root 96 0 1756K 1632K ect 1 0:01 0.00% 0.00% make
351 root 96 0 2420K 1952K ect 1 0:01 0.00% 0.00% sshd

Only 35.8 percent idle is a lot better (@); both processors are working now. Let’s
check vmstat:

procs memory page disks faults cpu
rbw avm fre flt re pi po fr sr ad4 da0 in sy cs us sy id
040 19236 385696 2521 O 0 03021 O 8 O 350 3691 5099 52 27 21
050 29304 374976 2768 0 0 02381 O 14 O 357 3929 5403 56 28 16
020 20992 381444 3140 O 0 03634 O 25 O 364 4143 6585 52 32 16
010 19348 378600 2925 O O 03064 O 39 O 386 4542 8170 39 34 27
06 0 25296 372936 3464 O 0 03356 O 7 O 349 4734 9110 47 37 16
020 20456 374884 2584 0 0 02860 O 44 0 383 3683 5209 52 27 21
06 0 27140 367312 2828 0 O 02660 O 10 O 352 4081 6572 52 32 16

Well, this is better on the CPU front. If you watch long enough, you’ll see an
occasional bubble of CPU shortage, but it’s much better than it was before.
(Momentary shortages are perfectly natural—you only need to worry when they
keep recurring.) But the contents of the b column, which lists processes that
cannot run because they’re waiting for the disk, is alarming. It is never 0, which
tells us that our process has become disk-bound.

Still, let’s look at our current timestamps:
Sun Aug 19 12:35:25 EDT 2001
Sun Aug 19 12:46:46 EDT 2001

It’s 11 minutes, 21 seconds, or 681 seconds. Using both CPUs chopped about 30
seconds off the process. While that’s only about a 5 percent increase in speed,
we got that increase without spending a dime on additional hardware. Our next
problem is to reduce the I/O bottleneck.

System Performance 439

e

6524 BSD Chapter 18 7/1/02 4:08 PM Page 440 :E

440

Chapter 18

Directory Caching

The least intrusive way to reduce disk input/output is to enable directory
caching with the vfs.vmiodirenable sysctl (Chapter 16). We could do this with-
out rebooting the system with sysctl(8) (Chapter 4). (You might already have this
enabled, depending on your version of FreeBSD, but you should check it.)
#sysctlvfsvm1od1renab1e=1 ...
vfs.vmiodirenable: 0 -> 1

Since our test says we need to reboot the system anyway, though, let’s set this
sysctl in /etc/sysctl.conf, delete /usr/obj, and reboot. Next, we’ll run the make
buildworld with the same command. Our top output looks almost identical to
the last run, so I won’t bother showing it here again, and when we run vmstat, it
also looks very similar. Here are the timestamps:

SunAug19132158EDT2001 ...
Sun Aug 19 13:33:15 EDT 2001

The total is 677 seconds. We’ve saved 4 whole seconds by caching directory lists.
Why so little?

Well, the purpose of caching something is so it can be reused later. When
you build a piece of software, the build process visits each directory just once. If
you never return to the same spot and actually use the cache, it’s pointless. We’ve
seen a minor savings from the rare occasions when make buildkernel visits a
directory repeatedly, but that’s all. You’d see better improvements on processes
such as a Web server, which accesses the same files over and over again.

So, our disk is still the bottleneck. It’s time for some major surgery.

Moving /usr/obj

The make buildkernel process reads files under /usr/src and writes them under
/usr/obj. Let’s take one of our ancient SCSI disks and mount it on /usr/obj,
leaving /usr/src on the new IDE disk. For our first test, we’ll use a default
mount without soft updates, just to illustrate a point. Our system disks now look
like this:

Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad4s1a 248111 74081 154182 32% /
/dev/ad4s1f 2032839 133492 1736720 7% /test1
/dev/ad4slg 2032839 1266476 603736 68% /test2
/dev/ad4sih 29497862 3842891 23295143 14% /usr
/dev/ad4sie 3048830 977220 1827704 35% /var

procfs 4 4 0 100% /proc
/dev/da0sie 3525041 1 3243037 0% /usr/obj
#

6524 BSD Chapter 18 7/1/02 4:08 PM Page 441 :E

In theory, input and output will be spread between different disks. Our top out-
put is similar, but vmstat looks different:

procs memory page disks faults cpu
rbw avm fre flt re pi po fr sr ad4 da0 in sy cs us sy id
040 29200 329436 2433 0 0 02109 O 2 12 367 3390 3220 58 24 18
000 15388 338376 2298 0 0 012939 0 1 23 390 3315 4487 49 24 26
000 19124 336604 2453 0 O 02559 0 3 30 413 3672 5333 39 29 32
03 0 23680 330252 2000 O O 0 1818 0 14 65 489 2979 4874 29 24 46
040 22832329136 2628 0 O 02768 O 1 16 374 3783 5158 50 28 23
050 23404 326976 2624 O O 02702 O O 15 373 3815 5550 52 29 20

We’re still blocking, waiting for disk throughput, but take a look at the ad4 (IDE
disk) and da0 (SCSI disk) columns. Load is now split between the two. When
we’re done, our timestamps look like this:

SunAug - 135954 L
Sun Aug 19 14:11:41 EDT 2001

Seven hundred and seven seconds! That’s just as bad as when we started! Ouch.
A thing to remember, however, is that this decrepit SCSI drive, without soft
updates, performed just as well as a modern IDE drive. Buying a modern SCSI
drive would definitely enhance performance. Let’s enable soft updates on our
new /usr/obj and see what happens:

umount /usr/obj

tunefs -n enable /usr/obj
tunefs: soft updates set

mount /usr/obj

Now delete everything in /usr/obj, reboot, and try again. A check of vmstat
shows that disk throughput is unquestionably our bottleneck, again. With soft
updates, our time goes down to 670 seconds. Soft updates gave us a total 6 per-
cent improvement. While this certainly isn’t great, the time savings add up over
the course of a day or a long build.

You should now have a very good idea of how to tune your system. Play with
it some more. Perhaps /usr/obj as a mirrored Vinum partition, with soft
updates—this pulls the time down to 663 seconds, or a 7 percent improvement.
That’s about as good as it gets. Throughout it all, vmstat shows that disk
throughput is the bottleneck.

System Performance 441

6524 BSD Chapter 18 7/1/02 4:08 PM Page 442 $

Lessons Learned

442

Chapter 18

In the preceding process we learned that disk speed is inarguably the bottle-
neck. This particular four-year-old SCSI disk handles data just as quickly as a
modern IDE disk, but if we want faster performance we need a faster disk.
Faster disks are much less expensive than a whole new machine, even if that new
machine includes a faster disk.

Best of all, you can now go to your manager and say, “This is bad. We need
a faster disk. Our vendor, AbsoluteBSD.com, has them for $400,” and be certain
of your facts. That’s much better than saying, “This is bad; we need a new
server.”

Of course, programs other than make buildkernel have completely different
requirements and must be evaluated separately. While a 5 to 10 percent increase
isn’t a huge performance boost, it can make the difference between doing main-
tenance during the normal maintenance window and pulling a desperate triple
shift to get the new equipment slammed into place so that people can do their
work the next morning.

